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ABSTRACT 

Using the  simple veh ic le  o f  t r i d iagona l  Toep l i t z  matr ices,  t he  

quest ion o f  whether one must p i v o t  du r ing  the  Gauss e l i m i n a t i o n  pro- 

cedure i s  examined. 

d u r i n g  the  e l i m i n a t i o n  process i s  given. 

An exact expression f o r  the  m u l t i p l i e r s  encountered 

It i s  then shown t h a t  f o r  a 

p ro to type Helmholtz problem, one cannot guarantee t h a t  e l i m i n a t i o n  w i th -  

ou t  p i v o t i n g  i s  s tab le.  
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1. MULTIPLIERS IN GAUSS ELIMINATION 

It has been conjectured that when Gauss elimination is applied to the 

linear algebraic systems resulting from discretizations of Helmholtz type 

differential equations,' the elimination process may proceed without the 

need for pivoting for small enough grid sizes. The main goal of this note 

is to show that in general this conjecture is false. This is not a question 

of the near singularity o f  the matrix in the case of the frequency parameter 

w being near an eigenvalue o f  the discrete Laplacian operator. The results 

below apply most particularly to the case where w is well away from such 

an eigenvalue so that the matrix in question is not even approximately sin- 

gular. 

the need for pivoting is studied by examining the multipliers encountered 

The vehicle we use is that of tridiagonal Toeplitz matrices, and 

when the elimination process proceeds without pivoting. 

Consider the Toeplitz tridiagonal matrix 

a 

C 

b 

a b  . . . . . 
C a 

C 

When a # 0 this matrix is singular only if 4bc > a' and cos[jn/(n+ 13 

= -a/Z(bc)l/' for some icteger j between 1 and n. If a = O ,  the matr - i -x  

is also singular whenever n is odd. It is easily $hewn, e.g. by induction, 

that if we attempt to reduce this matrix to upper bidiagonal form without m y  

pivoting, then the multiplier m 

eliminate the 

encountered when we use the jlth row to 

element of (1) satisfies the difference equation 
j 

(j + 1, j )  
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where n i s  the dimension of the matrix ( 1 ) .  Further, i t  can be shown, 

e.g. again by induction, t ha t  these multipliers may be expressed i n  the 

form 

m = c E  / E  , j = l , 2 , 3  ,... , n - 1  j j-1 j ( 3 )  

where the E . ’ s  s a t i s f y  the l inear  recurrence re la t ion  
J 

E j  - a E j - l  + b c E  j -2 = O  , j = 2 ,  3 ,..., n - 1  ; 
(4) 

E 0 = l , E 1 = a .  

S u b s t i t u t i n g  E j  = A J  i n  ( 4 )  yields tha t  

x ,2 = *[a 1 f ( a 2  - 4bc) 1 / 2 ]  

Then, using the i n i t i a l  conditions Eo = 1 and  E l  = a yields 

Then, froiii ( 3 )  

J - i J ) / ( A J + ”  - A:+’) , j = I ,  2 ,  3 ,..., n - 1 . m = C ( A ,  2 1  j 

Letting A, = expla + p )  and x2 = exp(-u + B )  we are  eas i ly  led to  
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m = (c/b)’/‘ sinh[aj]/sinh[a(j + l ) ] ,  
j 

j = 1 ,  2 ,  3, ..., n - 1 , 

where 

1/2 cosh cx = a/Z(bc) . 

( 5 )  

Formulas (5) and ( 6 )  are  valid for general complex a ,  b ,  and c . 
For a ,  b ,  c real there are three cases t o  consider. The f i r s t  

case i s  when bc ’> 0 and 4bc > a 2  . I n  this case cx i s  imaginary and 

(5), (6 )  become 

m j = (c/b)’/‘ s i n [ ~ j ] / s i n [ ~ ( j  + l ) ]  

and 

( 7 )  

Now the angle 0 i s  r ea l .  The second case i s  when bc  > 0 and 

a* > 4bc for which ( 5 ) ,  ( 6 )  apply with a r ea l .  The th i rd  case i s  

t h a t  of bc < 0 for  which a = y - i r / 2  with y real .  Then ( 5 ) ,  ( 6 )  

become 

sinh[yj]/cosh[y(j + 1 ) J  fo r  j even 

[ cosh[y j ] / s inh[~( j  + l ) ]  for  j odd 
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and 

The border case between the f i r s t  and second case, i . e .  

yields t h a t  

a 2  = 4bc , 

m = ( c / b ) ’ l 2  j / ( j  + 1 )  (11 1 
j 

while the border case between the second and third cases, i . e .  bc = 0 , 

yields t h a t  

m = c/a . 
j 

Note t h a t  i f  b = 0 , ( 1 )  i s  lower bidiagonal while i f  c = 0 , (1)  i s  

upper bidiagonal. 

We note t h a t  i f  the elimination proceeds wi th.out pivoting , we have 

t h a t  t he  matrix ( 1 )  has the factorization 

where u1 = a a n d  u = a - b in j -1 

the s t ab i l i t y  o f  t h e  elimination process i s  controlled by the s ize  of  

for j = 2 ,  3 ,  ..., n . Clearly 
j 
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t h e  m u l t i p l i e r s  m f o r  if the m . ' s  a r e  la rge ,  t h e r e  w i l l  be accuracy 
j J 

l o s t  i n  the  c a l c u l a t i o n  o f  the u . ' s  . 
3 

2. PROTOTYPE HELMHOLTZ PROBLEM 

Consider the prototype Helmholtz equat ion f o r  t h e  f u n c t i o n  u ( x )  

2 - "XX - u ~ = f ( x )  , O < x < d  

(13) 

u ( 0 )  , u(d)  g iven 

where w i s  t h e  g iven constant frequency. A simple centered d i f ference 

approximat ion y i e l d s  a l i n e a r  system w i t h  a c o e f f i c i e n t  m a t r i x  o f  t h e  

form (1) where a = 2 - h , b = c = -1 and h = d / (n  + 1) . Here 

we have subdiv ided the i n t e r v a l  [0, d]  i n t o  (n + 1 )  equal s u b i n t e r -  

v a l s  o f  l e n g t h  h . We have, f o r  h s u f f i c i e n t l y . s m a 1 1 ,  t h a t  

0 < a = 2 - u2h2 < 2 and t h a t  bc = 1 and a* < 4bc so  t h a t  ( 7 ) ,  (8 )  

2 2  

apply  

The eigenvalues o f  the operator (13)  a r e  g iven by s2r2/d2 f o r  

s = 1, 2, 3 , 1 . .  . Now l e t  k d d  < w < ( k  + 1 ) d d  , i . e .  u2 i s  between 

the  k - t h  and (k  + 1 ) - s t  eigenvalue o f  (13),  so t h a t  

k d ( n  + 1) wh < ( k  + l ) n / ( n  + 1 )  . Recal l  t h a t  n i s  t h e  dimension 

o f  our  m a t r i x  so t h a t  we wish t o  examine the  m u l t i p l i e r s  

Now as j ranges from 1 t o  (n - 1 )  , ( j  + 1 ) ~  ranges over an 

m , 1 5 j 5 n - 1 . j 

i n t e r v a l  a t  l e a s t  as l a r g e  as 

[ 2 ( k  t l ) n / ( n  + 1 )  , (n - 1 )  k d ( n  + 111 . 
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T h u s  fo r  n l a rge ,  i .e. h small, (j + 1 ) B  ranges over an interval  

which includes the f i r s t  k multiples of TI . T h i s  remains t rue  no 

matter how small h becomes. Thus regardless of how small h i s ,  

the possibi l i ty  ex is t s  t h a t  f o r  some j $ (j + 1 ) ~  may be very close 

t o  a multiple of 'II ; indeed i t  may equal such a number. 

mult ipl ier  m , given by ( 7 ) ,  may become a r b i t r a r i l y  large.  Note t h a t  

i f  k = 0 so t h a t  w < Ird , i . e .  the problem (13)  i s  posit ive de f in i t e ,  

then B ( j  t 1 )  e v fo r  1 - -  < j < n - 1 so tha t  the mult ipl iers  cannot 

become large. O f  course, for  a given w and h $ the mult ipl iers  may 

be well behaved, even i f  w i s  such t h a t  our problem i s  indef in i te .  

However, as indicated above, i n  general t h i s  cannot be guaranteed. 

Therefore some 

j 

Further  insight  may be gained by considering perturbations of the 

parameter w . Suppose w and h are  such t h a t  6 = n / ( t  + 1 )  exactly 

for  some II such t h a t  1 - < II n - 1 . For h small we have 

8 2' a h  = ud / (n  + 1 )  and therefore 

w d / ( n  + 1 )  2 a / ( a  + 1 )  or (n. + 1) 2 n ( n  + l ) / W d  .. 

Therefore f o r  h small, n i s  large and  II = O ( n )  = O( l / h )  . For 

such B , we have mll = m . Now l e t  us perturb the frequency w ; we 

l e t  

= w ( l  i- E L )  W1 

where W '  = O ( 1 )  and E << 1 . I t  i s  then easy to  show t h a t  
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and  

- - - - l ) w ' E  t fj(E2 + h2 + E h  + E 3 / h )  
1 - R U ' E  

m,=l 

Clearly as  E -t 0 , w1 -f w , rn, -+ - and m,,l -+ 2 . 
We now balance E against l / h  . F i r s t ,  choose E = O(h ) , t h a t  2 

2 i s ,  l e t  w1 = ~ ( 1  + w ' h  ) . Recalling t h a t  R = O(l/h) , we have from 

(141, (15) 

m = e / ( &  + 1 )  + O ( l / h )  and mR - = 2 + O ( h )  R 

so tha t  m, - ma , which was in f in i t e  before we 

perturbed w , i s  now O(l/h) . Perhaps t h i s  i s  tolerable  i f  h i s  not 

too m a l  1 .  

i s  s t i l l  bounded while 

Now choose E = O ( h )  , i . e .  w1 = ~ ( 1  + W ' h )  . Then ( 1 4 ) ,  (15) 

y ie ld  t h a t  

a s  1 

Thus a choice of w1 = ~ ( 1  + h / 2 d )  

I f  we choose w '  = 1 / 2 d  we have t h a t  e h w '  < 2 so t h a t  me - 

well a s  ma are bounded independent o f  h . 
will reduce ma. without causing a catastrophe with me-l . 

I t  i s  easy to  show t h a t  i f  u ( x ;  W )  i s  the solution of (13),  then 

i f  we vary w we have t h a t  



u ( x ;  w,)  - u ( x ;  w )  = 0 ( W l  - w )  . 

2 Therefore, i f  we choose E = O(h ) we have t h a t  

an e r ror  which i s  of the same order as the discret izat ion e r r o r  of the 

scheme employed above. Therefore we may reduce an i n f i n i t e  multiplier 

t o  one w i t h  magni tude o f  O ( l / h )  

a manner so t h a t  any e r ror  introduced i s  of the same order as  the  d i s -  

cret izat ion error .  

by perturbing the frequency i n  such 

On the other hand, i f  we wish to  reduce an i n f i n i t e  

multiplier to  one with magnitude o f  0(1) , then we must perturb the 

frequency, and by (16)  the solution, by O(h) , a n  e r ro r  la rger  than 

the discretization e r ror .  

3. UPWIND DIFFERENCES 

We briefly examine a second example which may also be analysed 

u s i n g  the we1 1 known von-Neumann s t a b i l i t y  theory. 

type convection-diffusi on equation 

Consider the proto- 
2 

1 - u  R xx  - V u x = f ( x )  in O < x < d  

u(O), u ( d )  given; V > 0 . 

I f  we approximate both uxx and. ux by central difference quot ients  
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we are led to  a system w i t h  coeff ic ient  matrix of the form ( 1 )  w i t h  

a = -2/Rh2 , b = IJR h 2  - V/2h and c = 1 /Rh2  + V/2h . 
bc = [ l  - (RVh/2 )2 ] / (Rh2)2  . 
Reynolds number" condition is sa t i s f i ed ,  then 

T h u s  

If RVh/2  < 1 , !.e. the well known2 "ce'll 

bc > 0 and a2  > 4bc 

so tha t  (5), (6)  apply and the multipliers are  well behaved. ( T h i s  

conclusion can o f  course a l so  be reached by noting t h a t  i f  RVh/Z < 1 

' the matrix i s  diagonally dominant.) On the other h a n d ,  i f  RVh/2 > 1 

so tha t  the cell  Reynolds number condition i s  violated, bc < 0 and 

the mult ipl iers  MY become large. This i s  easi ly  seen i n  the l imit  

R -+ QD (with V ,  h f ixed) for which ml + OD . 
2 Now consider an "upwind differencing" scheme i n  which ux i s  

approximated by the backward difference ( u j  - u ) / h  . We a r e  then 

led to  a = -2 /Rh2 - V/h , b = 1 /Rh2  and  c = 1 /Rh  t V/h . Then  

bc = (1 /Rh2)*(1  t RVh) > 0 and a2  > 4bc for  a l l  R ,  h and  V . 

j -1 
2 

Therefore ( 5 )  and (63 apply and the mult ipl iers  a re  well behaved. In 

the l imi t  R + 

T h u s ,  there  i s  no ce l l  Reynolds number condition when upwind-  differencing 

is  used on the convection term. 

i t  i s  easy t o  show t h a t  the multipliers tend t o  unity.  

We note t h a t  once again this conclusion 

may be deduced from the diagonal dominance o f  the matrix. 
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